Erratum: Support vector machine regularization
نویسندگان
چکیده
منابع مشابه
Adaptive Regularization for Transductive Support Vector Machine
We discuss the framework of Transductive Support Vector Machine (TSVM) from the perspective of the regularization strength induced by the unlabeled data. In this framework, SVM and TSVM can be regarded as a learning machine without regularization and one with full regularization from the unlabeled data, respectively. Therefore, to supplement this framework of the regularization strength, it is ...
متن کاملSupport Vector Machine with spatial regularization for pixel classification
We propose in this work to regularize the output of a svm classifier on pixels in order to promote smoothness in the predicted image. The learning problem can be cast as a semi-supervised SVM with a particular structure encoding pixel neighborhood in the regularization graph. We provide several optimization schemes in order to solve the problem for linear SVM with `2 or `1 regularization and sh...
متن کاملThe Entire Regularization Path for the Support Vector Machine
In this paper we argue that the choice of the SVM cost parameter can be critical. We then derive an algorithm that can fit the entire path of SVM solutions for every value of the cost parameter, with essentially the same computational cost as fitting one SVM model.
متن کاملC-Regularization Support Vector Machine for Seed Geometric Features Evaluation
People have been utilizing Support Vector Machine (SVM) to tackle the problem of data mining and machine learning related to many practicalities. However, for some training set of multi-group which presents unbalance of the number of samples, a classifier model trained by C-SVM always results in some unbalanced error-rates. Grounded upon analysis of Lagrange multiplier, the paper proposes the M...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wiley Interdisciplinary Reviews: Computational Statistics
سال: 2011
ISSN: 1939-5108
DOI: 10.1002/wics.188